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Abstract

Hemolysins are a class of proteins defined by their ability to lyse red cells but have been described 

to exhibit pleiotropic functions. These proteins have been extensively studied in bacteria and more 

recently in fungi. Within the last decade, a number of studies have characterized fungal 

hemolysins and revealed a fascinating yet diverse group of proteins. The purpose of this review is 

to provide a synopsis of the known fungal hemolysins with an emphasis on those belonging to the 

aegerolysin protein family. New insight and perspective into fungal hemolysins in biotechnology 

and health are additionally presented.
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Introduction

Hemolysins have been classically defined as exotoxins that are capable of lysing red blood 

cells as well as nucleated cells. Current knowledge suggests that hemolysins are pore-

forming toxins that interact with specific ligands on the surface of various target cells [1]. 

Although extensively studied in various bacterial species [1,2], hemolysins have also been 

reported in fungi [3,4], plants [5], invertebrates [6– 8], and mammals (perforins) [9]. 

Bacterial hemolysins have been well characterized due to the role of these proteins in 

pathogenesis and, their structural details, mechanisms of hemolysis, ligand differences on 

target cells, and diagnostic potential have been described [2,10– 19]. In contrast, less is 

known about fungal hemolysins. In this review, we aim to describe the structural and 

biochemical features and the pleiotropic functions of these fungal proteins, with emphasis on 

aegerolysins. Furthermore, we identify current issues with the isolation and characterization 

of these proteins and provide perspectives into the possible role for these proteins in fungal 
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biology, health, and biotechnology. In addition, we will discuss comparisons to bacterial 

hemolytic proteins that share sequence homology to fungal hemolysins.

Hemolysins were first reported in higher fungi in 1907 and 1911 by W. W. Ford while 

studying various basidiomycete genera including Amanita, Entoloma, Lactarius, and 

Inocybe [20,21]. In 1939, Henrici, a microbiologist at University of Minnesota in 

Minneapolis, reported the first hemolytic activity in filamentous fungi while investigating 

the pathogenic ascomycete species, Aspergillus fumigatus and Aspergillus flavus [22]. The 

authors reported that extracts collected from the mycelium of the fungus grown for 2 – 4 

days were heat sensitive, hemolytic, and produced necrosis and edema when introduced in 

experimental animals. Further studies by Salvin in 1951 at the Rocky Mountain Laboratory 

in Hamilton, Montana, led to the identification of similar hemolytic activity in the endemic 

fungal pathogens, Histoplasma capsulatum and Blastomyces dermatidis, as well as the 

opportunistic pathogens, including Candida albicans and Cryptococcus neoformans [23]. 

This was the first report that suggested the existence of more than one fungal hemolysin. To 

date, hemolysins have been identified and partially characterized from a wide variety of 

fungal species and these are summarized in Table 1.

During the last decade, the study of fungal hemolysins has benefitted from efforts to 

sequence the genomes of medically and biotechnologically important fungal species [24– 

29]. Using bioinformatic approaches, these databases have enabled investigators to identify 

homologous hemolytic proteins from other fungal species. One cluster of these proteins, 

including hemolytically active representatives has been identified as the Aegerolysin family 

(IPR009413, Pfam: PF06355; Table 1) [30], with Aa-Pri1 (aegerolysin) as the prototype. 

Aegerolysins form the largest group of fungal hemolysins that have been characterized. 

They are generally small in size (15 – 20 kDa) with a β-sheet structure, conserved cysteine 

residues, and characterized by a large number of aromatic and acidic residues. These 

proteins are stable over a wide range of pH but are heat labile above temperatures of 60 – 

65°C. Interestingly, aegerolysins have also been identified in plants such as Selaginella 

moellen-dorffi [31], insects like Chrysodeixis includens, and the dsDNA virus Trichoplusia 

ni ascovirus 2c [32,33].

However, proteins from other families have also been implicated in hemolysis. The genomic 

data derived from fungi has also aided in the identification of homologous proteins in 

bacterial species including Pseudomonas aeruginosa, Clostridium bifermentans, 

Burkholderia glumae, Vibrio cholerae as well as some others [34– 37].

Mechanism of hemolysis

Fungal hemolysins are typically found in a β-sheet conformation, barring the exception of 

nigerlysin [30,38– 40]. An in silico secondary structure analysis of protein sequences 

suggests that all the proteins belonging to the aegerolysin family are β -sheet proteins. The 

aegerolysins are pore-forming proteins that aggregate on the cell surface after recognition of 

distinct membrane components. The process of pore formation is dependent on protein 

conformation and unfolding as for all pore-forming toxins [1]. Experimentally, ostreolysin 

was found to bind in a β -sheet conformation and then unfold into an α-helical structure 
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following permeabilization of target vesicles [41]. Similarly, unfolding of ostreolysin from a 

β-sheet conformation to α -helical structure prior to interacting with target cells resulted in 

the loss of lytic activity [38]. These studies demonstrate that the β-sheet conformation is an 

important prerequisite for initial ligand recognition on target cells that results in eventual 

permeabilization.

Bacterial β -sheet hemolysins have been characterized as small β -pore forming toxins such 

as aerolysin ( Aeromonas hydrophila ) and α-toxins (Staphylococcus aureus and Clostridium 

septicum ), cholesterol dependent cytolysins (CDCs) such as streptolysin O ( Streptococcus 

pyogenes) and listeriolysin O ( Listeria monocytogenes ) or AB toxins such as the diphtheria 

toxin ( Corynebacterium diphtheriae ) [1]. Current knowledge of fungal hemolysin structure 

does not provide enough information for similar categorization. Fungal hemolysins such as 

ostreolysin have been reported to form pores 4 nm in size [41], slightly larger than that 

reported for aerolysin (2 nm) [42]. Elsewhere, in the two-component hemolysin system of 

Pleurotus ostreatus, pleurotolysin A and B form pores of 3.8 – 5 nm in size [43]. 

Flammutoxin has been reported to form pores of at least two different sizes [44]. 

Collectively, these sizes reported in these studies are smaller than those typically observed 

for other β-pore-forming toxins (15 – 30 nm) and CDCs (350 – 500 nm) [45].

Some fungal hemolysins from the aegerolysin family also appear to act like thiol-activated 

CDCs in terms of receptor specificities. Like many CDCs, ostreolysin has been reported to 

require interaction with cholesterol rich domains in the membrane [46]. However, 

ostreolysin cannot bind pure cholesterol and only interacts with cholesterol when it is in 

association with sphingomyelin. These observations are similar to those made for the 

bacterial cytolysin of Vibrio cholerae [47].

The two component hemolysin system of pleurotolysin A and B in P. ostreatus appears to 

have involvement of the A and B components, but do not behave like the AB toxins in 

bacteria [43]. It appears that unlike the B subunit of the AB toxin in bacteria, which does not 

insert in the membrane of target cells, both pleurotolysin components appear to bind to the 

membrane directly. Based on these experimental findings, fungal hemolysins likely 

represent a novel class of β-sheet pore-forming toxins that form pores closer to the size of 

small β-pore-forming toxins but rely on interactions with cholesterol rich domains like 

CDCs.

Lectin-based hemolytic activity has also been reported in the parasitic basidiomycete, 

Laetiporus sulphureus [48]. This hemolysin has structural similarities to α toxin from 

Clostridium septicum and the mosquitocidal toxin (MTX2) derived from Bacillus sphaericus 

[49]. The hemolytic protein designated as LSL (Laetiporus sulphureus lectin) is composed 

of two domains with different functions. The N-terminal domain recognizes carbohydrate 

epitopes, while the C-terminal domain is required for oligomerization. Interestingly, the C-

terminal domain is very similar in structure to aerolysin (A. hydrophila) [50] and the 

removal of this domain in mutagenesis studies completely removed hemolytic activity. 

These findings are consistent with the principle that oligomerization on the surface of target 

cells is an essential step prior to pore formation. More detailed information on LSL can be 

found elsewhere [51].
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Very few studies have examined the kinetics of fungal hemolysin binding to target cells 

[52,53]. Colloid-osmotic mechanisms have been proposed as the principle mechanism 

associated with hemolysis [30,41,54]. This mechanism has been reported in bacteria for δ-

toxin of Bacillus thuringiensis, θ-toxin of Clostridium perfringens and the hemolysins of 

Vibrio vulnificus and Moraxella bovis [55–58]. For fungal hemolysins, both ostreolysin and 

aegerolysin show the typical sigmoidal curve of hemolysis, which is characterized by an 

initial lag phase followed by rapid lysis of target cells [4]. The lag phase is characteristic of 

colloid-osmotic mechanism for lysis and likely represents the time required for monomer 

binding and oligomerization on the surface of target cells followed by the gradual influx of 

ions and water. This leads to swelling and eventually results in the lysis of the target cells.

Secretion of hemolysins

In contrast to bacterial hemolysins that are secreted, the destination of fungal hemolysins 

remains unclear and has not been characterized. Initial studies on the secretion of fungal 

hemolytic factors reported contradicting observations due to the limitations associated with 

extract preparation [22,59–62].

In a study characterizing asp-hemolysin, polyclonal antibodies were generated to a 

recombinant asp-hemolysin and used to demonstrate the hemolysin in the supernatant of A. 

fumigatus cultures [63]. Proteomic analysis of A. fumigatus and A. nidulans demonstrated 

that asp-hemolysin and its homologue (Accession No. CAK37181) are present in fractions 

secreted from growing hyphae [64– 66]. Furthermore, asp-hemolysin was recently reported 

as the 4th most abundant protein in the A. fumigatus secretome [66].

Studies that utilized A. fumigatus glycophosphati-dylinositol (GPI) mutants showed that asp-

hemolysin was absent from the secreted fraction of afpig-a mutants [67]. This suggests a 

possible role for GPI proteins in contributing to secretion of hemolysins, however this 

possibility is currently not well understood.

These findings were recently supported during in vitro studies of A. terreus putative 

hemolysin expression by Nayak and colleagues [3,39], in which the authors produced 

recombinant terrelysin and developed specific monoclonal antibodies that were used to 

quantify the native protein in hyphal and secreted fractions grown in liquid culture at various 

temporal intervals. In these studies, it was observed by ELISA that the highest 

concentrations of terrelysin were found in the culture supernatant during early phases of A. 

terreus hyphal growth [3] when compared to later time points where hyphal growth and 

apical elongation were reduced. It was further observed using immunohistochemistry that 

terrelysin was localized to the apical regions of the hyphae. Since terrelysin lacks a signal 

peptide, it was proposed that terrelysin might either diffuse out or be actively secreted 

during initial hyphal growth (i.e., apical elongation) through other yet uncharacterized 

processes. The rapid diffusion of proteins and enzymes from apical regions of hyphal tips is 

well characterized [68–73].

In contrast to these observations, proteomic studies of A. flavus and A. terreus revealed that 

their homologous hemolysins may not be secreted [74,75]. One of the possible reasons for 

this discrepancy could be that these studies used broad proteomics-based analyses that are 
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less sensitive than monoclonal antibody-based assays. To date, the kinetics of hemolysin 

expression from other filamentous fungal species remains to be characterized.

Hemolysins as virulence factors

Based on a number of mechanistic and characterization studies, several fungal hemolysins 

have been proposed as virulence factors [76,77]. Hemolysins lyse red blood cells resulting in 

the release of iron, an important growth factor for microbes especially during infection [78]. 

The requirement of iron in fungal growth is necessary for metabolic processes and as a 

catalyst for various biochemical processes and has been reviewed in detail elsewhere [79].

Expression of a hemolytic protein with capabilities to lyse red blood cells has also been 

suggested to provide a survival strategy for fungi during opportunistic infections. For 

example, in Candida, the secretion of hemolysin coupled with iron uptake facilitates hyphal 

invasion during disseminated candidiasis [80]. Fungal hemolysins have been reported as a 

potential cause of hemorrhage in several investigations [60,81,82]. Ostreolysin has been 

shown to possess cytolytic and cardiotoxic potential in vitro and in vivo [83– 86]. Similarly, 

non-aegerolysin family hemolysins such as phallolysin, rubescenlysin, flammutoxin and 

others have been identified, purified and extensively characterized for their cytolytic and 

cardiotoxic activities [87– 100]. Most studies on the role of hemolysins in disease have used 

purified or partially purified proteins. For many of these studies, concentrations of the 

proteins used to determine toxic effects have not been studied from a physiologically 

relevant perspective. A recent research article on A. fumigatus that used asp-hemolysin 

mutants showed that the hemolysin concentrations might have been overestimated and may 

not be physiologically relevant during infection [66]. Mutation of asp-hemolysin as well as 

the related asp-hemolysin-like protein did not show any significant reduction in hemolytic 

and cytotoxic activities of the fungus. In this same study, mutants of asp-hemolysin did not 

exhibit any attenuation of virulence by A. fumigatus. Interestingly, a strain with mutations 

for both hemolysins was slightly hypervirulent. These data suggest that the previous 

interpretations of the role of hemolysins in A. fumigatus and other fungal virulence may be 

overestimated. In view of these recent observations, the hemolytic and cytolytic activity 

appears to be only coincidental to a yet uncharacterized intracellular or extracellular 

function.

Role in fungal biology

The likelihood that fungi evolved hemolysins for the sole purpose of lysing red blood cells 

in vivo to improve growth is highly unlikely. Most fungi exist in the environment as 

saprophytes. In some cases, the fungus may grow on or in living tissues especially in an 

immune suppressed individual. This may provide an opportunity for colonization and 

infection. For fungi, animal hosts are a rich source of organic material.

As noted above, recent studies of A. fumigatus, cause one to question whether fungal 

hemolysins have any demonstrable role in pathogenesis [66]. A more likely function for this 

family of proteins would be in the normal physiological processes and raises a valid 

question regarding the role of these proteins in fungal biology.
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Perhaps a clue to understanding hemolysins in relation to fungal biology comes from the 

basidiomycetes where ostreolysin ( Pleurotus ostreatus ) and aegerolysin ( Agrocybe 

aegerita ) are expressed during the initiation of fruiting bodies [4,101]. It is believed that 

these hemolysins have a functional role in hyphal aggregation, although the specific 

mechanisms remain uncharacterized [4,102]. Ostreolysin transcripts have been detected in 

the fruiting bodies of P. ostreatus [4] and the addition of the protein has been reported to 

enhance fruiting initiation in P. ostreatus [103]. These data suggest that the functional role 

of the protein is in the promotion of primordial formation, an early stage in the development 

of the mushroom, especially during hyphal aggregation.

One recent paper does not support this hypothesis [104]. Lakkireddy et al . (2011) recently 

proposed that lectins, aegerolysins and other molecules involved in hyphal aggregation and 

fruiting body formation are not consistently present in members of closely related 

mushrooms. Since primordial formation and hyphal aggregation are fundamental processes 

for growth and development, it is unlikely that a set of proteins with inconsistent distribution 

would play a significant role. The authors acknowledged that hemolysins interact with 

specific receptors (most likely lipid rafts) that may indirectly play a role in hyphal 

aggregation by influencing the frequency of cap formation.

Studies of filamentous fungi have reported a correlation between the kinetics of hemolysin 

expression and fungal growth and development. In studies of the ascomycete species A. 

terreus, detectable quantities of terrelysin are present extracellularly, especially during the 

early stages of germination and hyphal development [3]. Asp-hemolysin transcripts were 

detected from the stages of conidial germination to hyphal extension and branching in A. 

fumigatus; however, deletion of asp-hemolysin in mutant strains of A. fumigatus did not alter 

the phenotype (microscopic and macroscopic) or growth characteristics of the fungus [66]. 

In yeasts, contradicting observations have been reported on expression of hemolysins. In B. 

dermatitidis, the hemolytic activity was highest in the yeast phase of growth, while in C. 

albicans, it was in hyphal stage of growth accompanied with secretion of the hemolysin 

[23,105]. Elsewhere, in C. glabrata, phase switching in the fungus was associated with 

changes in the transcript levels of the hemolysin-coding gene HLP [106]. Investigating the 

role of hemolysins during the early stages of growth, especially in filamentous fungi could 

provide valuable information regarding the functional role of these proteins. It does not 

appear that these proteins are critical for fungal growth but based on these observations, it is 

probable that these proteins have a role in regulating fungal growth. In M. anisopliae, 

upregulation of the hemolysin gene was observed with fungal morphological instability or 

ageing [107]. This suggests a likely function for the product of this gene during 

fragmentation and apoptosis at least in M. anisopliae.

Another interesting aspect related to the role of these proteins in fungal biology is the 

presence of variable numbers of aegerolysin proteins in unrelated fungal taxa (Table 1). A. 

fumigatus possesses two aegerolysin hemolysins that belong to the aegerolysin family of 

proteins, and a third hemolysin that has been identified as an asp-hemolysin-like protein. In 

members of the order Eurotiales, A. niger expresses two proteins that belong to the 

aegerolysin family, while P. chrysogenum possesses sequences for five homologous proteins 

(Table 1). Multiple hemolysins have also been reported in basidiomycetes including P. 
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ostreatus and M. perniciosa [4,108–112]. In M. perniciosa, one hemolysin peaked during 

primordial formation, while another peaked during basidiocarp formation. Expression of a 

homologous protein to pleurotolysin B, peaked in mycelium and primordia, but reduced in 

the basidiocarp. Similarly, studies in A. fumigatus reported that the expression of asp-

hemolysin and the asp-hemolysin-like protein especially in the secreted fractions was 

different at different growth phases [66]. Currently, the biological relevance of having 

multiple hemolysins remains unclear.

Interestingly, a report from the USDA laboratories that examined gene expression in the 

phytopathogen, Alternaria gaisen, reported differential expression of the aegerolysin genes 

in dark and light conditions [113]. Here, significantly higher transcripts were reported from 

fungi exposed to light than those exposed to dark conditions. Future studies are needed to 

characterize the underlying mechanisms that govern expression of these proteins during 

different nutrient, temperature, light, and pH regimens.

Although hemolysins may not be virulence factors, another important function of these 

proteins may be related to their ecological niche. Fungi exist in the environment in 

competition with other fungi, bacteria and insects. Expression of a protein that can lyse a 

competitor ‘ s cells could help provide a survival advantage for the fungal species. In nature, 

especially in basidiomycetes, it has been proposed that hemolysins have a functional role as 

insecticides [114]. Homologous hemolysins derived from several bacterial species including 

Clostridium bifermentans have been reported to have insecticidal properties [35,115,116]. 

To date, insecticidal activity has not been identified for ostreolysin nor has it been reported 

in filamentous fungi. Interestingly, eryngeolysin from P. eryngii exhibited antibacterial 

activity against Bacillus species but not with bacteria from other species [110]. Fungi 

commonly share their local environment with Bacillus species in various phylosphere and 

rhizosphere ecosystems. Secretion of hemolytic proteins that specifically lyse bacteria may 

provide an opportunity to outcompete bacteria for available nutrients and resources.

Research studies have also shown that hemolysins bind to membrane lipids on target cells 

[30,46,84,117– 120]. Ostreolysin has been shown to lyse lipid vesicles generated from 

cholesterol/sphingomyelin and to a lesser extent, ergosterol/sphingomyelin [117]. The 

specificity of binding may provide the fungus with the ability to lyse target cells from plants 

or animals without causing damage to the fungal cell wall. Hemolysin specificity for certain 

lipids must have a relevant biological function. For example, ostreolysin binds to and lyses 

vesicles containing sitosterol, a phytosterol mainly present in plants [117]. Peanuts contain 

large amounts of sitosterol and are very susceptible to infection from fungi, especially 

Aspergillus species [121]. The hemolysins may have a functional role in plant pathogenesis; 

however, this remains largely uncharacterized and is the focus of further study.

Applications of aegerolysins

Enzymes and secondary metabolites of fungi have been utilized in industrial sectors for 

many years. Secondary metabolites from Aspergillus species have been identified as 

hypolipidemic agents and commercially exploited. Lovastatin, a polyketide-derived 

metabolite of A. terreus, was one of the first statins approved by the FDA for lowering 
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cholesterol [122]. Binding of fungal hemolysins to lipids and lipoproteins has been 

extensively studied for asp-hemolysin and ostreolysin [41,123,124]. Asp-hemolysin was 

characterized for its pharmaceutical potential in binding to low-density lipoprotein (LDL) 

and one of its derivatives, oxidized LDL (Ox-LDL) [125,126]. Asp-hemolysin was reported 

to bind specifically to apolipoprotein B in LDL [123,124], and lysophosphatidylcholine in 

Ox-LDL [126–129]. This specific interaction was reported to interfere with the pathological 

role of Ox-LDL in vitro [130– 132]. However, no animal studies have been published that 

show strong evidence for a pharmaceutical relevance of this hemolysin. Interestingly, 

terrelysin was not found to have any binding activity with serum lipids (unpublished data). 

Similarly, ostreolysin and aegerolysin also do not bind LDL [4]. The basis for binding of 

LDL by asp-hemolysin was suggested based on the positioning of certain acidic amino acids 

in the homologous repeats in various loops of the LDL receptor [63]. The critical positioning 

of aspartic acid and glutamic acid is absent for the homologous region in terrelysin and 

ostreolysin and may be a likely explanation for the lack of LDL binding. However, 

interactions with LDL or its derivatives are not only limited to fungal hemolysins and have 

been reported for other aegerolysin family proteins identified in bacteria. PA0122, an 

aegerolysin from P. aeruginosa, has been reported to bind Ox-LDL; however, no 

pharmaceutical potential has been reported [133].

Binding of fungal hemolysins to lipids has been extensively investigated by Sepcic and her 

colleagues at the University of Ljubljana in Slovenia [30,41,46,117,118]. They have 

observed that ostreolysin bound to cholesterol-enriched raft-like microdomains in the cell 

membrane [46,118,134]. Due to the importance of these microdomains in biological 

processes such as conidial germination, hyphal extension, signal transduction and pathogen 

interaction, these hemolysins might be useful tools for characterizing these highly dynamic 

structures in the cell membrane [135– 138].

Mushrooms have been studied extensively for their bio-medical properties. Investigations 

have identified a possible role for fungal hemolysins on contributing to these properties. 

This has generated a considerable interest in understanding the contribution made by 

hemolysins especially as anti-tumor agents [139]. Schizolysin, ( S. commune), eryngeolysin 

( P. eryngii ), nebrodeolysin ( P. nebrodensis) and phallolysin ( A. phalloides ) have been 

shown to possess anti-retroviral activity or cytotoxic to tumor cells; however, more research 

is needed to determine a physiological relevance [110,140–142].

In recent times, considerable interest has grown in use of filamentous fungi and mainly 

Aspergillus species for heterologous protein expression [143,144]. This has been aided by 

genome sequencing of many filamentous fungi and improvements in DNA purification and 

transformation technology. Expression of proteins in fungi is a very attractive avenue since 

they provide an efficient system for secretion of proteins and post-translational 

modifications in an inexpensive manner. Very recently in A. oryzae, the promoter from one 

of its hemolysin-coding genes (Q2TXT6) was identified to possess high promoter activity 

[145]. Genes expressed using this promoter overproduced coded proteins efficiently. More 

importantly, the promoter activity remained high in solid-state fermentations as well as in 

liquid cultures.

Nayak et al. Page 8

Med Mycol. Author manuscript; available in PMC 2015 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Another application of fungal hemolysins has been their use as biomarkers for personal 

exposure to fungi or species-specific identification of opportunistic fungal disease. Much 

interest in the adverse health effects of fungal hemolysins was stimulated by initial 

associations of Stachybotrys chartarum with an outbreak of idiopathic pulmonary 

hemorrhage (IPH) in Cleveland, Ohio, USA [146]. Fungal proteins capable of hemolysis 

were hypothesized as the causative agent and stachylysin was proposed as a potential 

biomarker for exposure to S. chartarum [81,147,148]. Detection of hemolysins from A. 

fumigatus and S. chartarum in sera and tissues of experimentally exposed animals and in 

some humans that worked in heavily contaminated environments further fueled an interest in 

utilizing fungal hemolysins as biomarkers for personal fungal exposure [148– 150]. Recent 

reports on the detection of terrelysin in the culture supernatant of A. terreus [3] and that asp-

hemolysin is the 4th most abundant protein in the secretome of A. fumigatus [66] suggest 

that hemolysins may be promising biomarkers of personal exposure. Collectively, there is 

considerable interest in the development of diagnostic assays for detecting these proteins as 

biomarkers of allergic and disseminated fungal exposure.

Limitations of fungal hemolysin research

Initial studies of hemolytic activity from different fungi used crude extracts or partially 

purified extracts [22,60,61,151– 159]. While these studies were performed with the 

experimental and purification methodologies available at the time, recent studies using 

recombinant proteins to generate specific antibodies have identified limitations in the 

previous work. Recently reported studies on the hemolytic activity of A. terreus, identified 

some critical limitations in purification methodologies [3,39,160]. In these studies, 

hemolytic fractions were purified from A. terreus culture supernatant [160] and found to be 

enriched with the hemolysin based on the functional activity, but on further analysis, the 

preparations were found to consist of at least two proteases. Using proteomic techniques, 

sequences for terrelysin could not be identified. Upon further characterization, the kinetics 

for expression of these proteases and terrelysin were found to be completely different 

[3,160]. As mentioned above, terrelysin was identified as being produced very early in 

culture associated with early hyphal growth. The protocols used for isolating hemolysins 

based on functional activity involved much longer culture times and it is probable that at 

these later time points (stationary growth phase), little hemolysin was produced and 

purification of other proteins such as proteases with hemolytic activity was occurring.

When asp-hemolysin was initially investigated from A. fumigatus, it was reported as a 30 

kDa protein [62]; however, further biochemical characterization by the same group showed 

that asp-hemolysin is a much smaller protein [39,63,161]. This discrepancy was not reported 

when asp-hemolysin was sequenced for the first time or when it was expressed as a 

recombinant protein [63,161]. This raised the question in the early studies on asp-hemolysin 

[62,82,149,162] whether the protein studied was indeed homogenous. This also questions 

the interpretation of studies on the characterization of hemolysins as being important for 

pathogenesis, as later studies clearly provide evidence against their role as virulence factors 

[66]. Future studies on the characterization of hemolytic proteins from fungi need to identify 

the hemolysins by immunochemical or proteomic methods rather than relying on hemolysis 

as a functional assay for purification.
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Using recombinant proteins to characterize the functional activity of hemolysins is not 

without technical concerns. Bacterial aegerolysins in Clostridium bifermentans and 

Pseudomonas aeruginosa were expressed in Escherichia coli as well as Bacillus 

thuringiensis expression systems; however, no hemolytic activity was observed with the 

purified proteins [35,133,163]. It is unclear as to why recombinant hemolysins expressed in 

bacterial expression systems are not functionally active. Several studies have aimed at 

expression of recombinant fungal hemolysins in E. coli also failed to produce functionally 

active hemolysins [39,161,164]. In the case of asp-hemolysin, the protein was expressed as a 

fusion protein with maltose binding protein (MBP) [161]. It is possible that MBP, which is 

almost three times the size of asp-hemolysin, could interfere with the structural 

conformation of the protein and thus affect the hemolytic activity of the protein. For 

flammutoxin, the removal a 20-amino acid region in the C-terminal domain was necessary 

to restore hemolytic activity [164]. In addition, when these proteins are expressed in the 

cytoplasm of the various expression systems, reducing conditions may inhibit the folding of 

the protein to its appropriate functional conformation.

Some studies have reported that these hemolysins possibly consist of multiple components 

and this concept is gaining more credence in recent times [43,111,165]. Previously, two 

component hemolysins have been reported in bacteria [166,167]. It has been suggested that 

two individual components interact with each other and this association is essential for 

hemolysis [165]. Aegerolysin proteins such as asp-hemolysin, ostreolysin, terrelysin, and 

other homologous proteins may interact with a larger subunit to form a functionally active 

two-component hemolysin. Based on sequence information available for the larger subunits, 

we could not identify a homologous protein in A. terreus.

The described limitations highlight the need to re-evaluate the term ‘ hemolysin ‘ as it 

pertains to mycology. A comprehensive review of the literature on fungal hemolysins 

suggests that the definition of hemolysis is vague and requires refinement based on 

characterization of mechanisms underlying hemolysis. Initial studies focused on relatively 

crude or partially purified hemolytic preparations. Functionally, hemolysis was observed but 

these studies were confounded by the presence of other proteins, more specifically 

proteases. As mentioned earlier, at least two proteases were identified that were co-purified 

in these crude preparations [160]. This was further corroborated in a study characterizing A. 

fumigatus strains lacking the protease transcription factor PrtT [168]. PrtT mutant strains 

showed loss of secreted protease activity and demonstrate very low levels of hemolytic 

activity. Fungi are known to secrete phospholipases that interact with host cell membranes 

and result in lysis [77]. In the study of asp-hemolysin mutants with reduced asp-hemolytic 

activity, extracts did not show a significant reduction in the total hemolytic activity of the 

fungus [66]. These studies demonstrate that while asp-hemolysin may contribute to 

hemolysis, specific proteases may be more important to the functional activity that is 

followed in the hemolysin purification protocols.

Finally, non-protein components of fungi with hemolytic activity have also been reported 

[169,170]. Preliminary characterization of hemolysis in Wallemia sebi, a xerotolerant 

basidiomycete, identified unsaturated fatty acids responsible for hemolytic activity, while 

the hemolysin of R. nigricans was characterized as a lipoprotein. These observations suggest 
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that the role of other macro-molecules and secondary metabolites may show hemolysis 

during initial characterization and further highlights issues with extraction and purification.

Summary

Fungal hemolysins belonging to the aegerolysin protein family are characterized by 

pleiotropic functions. These proteins were first identified for their role in pathogenesis as 

virulence factors; however, biochemical characterization studies highlight their function in 

other aspects of fungal biology. The ability of these proteins to bind to unique microdomains 

in the cell membrane opens a new area for research and serves as an essential tool in the 

characterization of the membrane lipids. Additionally, early studies on the detection of 

hemolysins during fungal infections and recent studies on secretion in vitro demonstrate 

their utility as putative biomarkers for fungal exposures. Finally, the wealth of information 

on the function of these proteins in fungal biology suggests a more important role for these 

proteins in fungal growth and regulation. The continued research in this area should provide 

additional insights into these unique proteins and provides an impetus for future research.
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Table 1

List of fungi with identified and described hemolysins

Fungal division/Fungi Aegerolysin
Accession number
(UniProtKB) Important notes Reference

Ascomycetes

Aspergillus clavatus YES A1CGD5 Putative uncharacterized protein

Aspergillus flavus YES B8N206, B8N7M1,
B8NLV7, B8NXA7

Putative uncharacterized proteins

NO N/A • Initial report on hemolysis in A. flavus

• Crude analysis of hemolytic toxins

[22]
[151]

Aspergillus fumigatus YES Q00050 (Strain
FGSCA1100)

Asp-hemolysin

• Initial report on hemolysis in A. 
fumigatus

• No correlation between hemolytic 
activity and toxicity in crude 
preparations

• Hemolytic component can be purified 
only during a limited period

• Initial attempts for purification of the 
hemolysin

• Hemolysin detected in tissues of 
experimental animals

• Toxic effects in animals inject with asp-
hemolysin

• First report of nucleotide sequence of 
asp-hemolysin

• Derivation of hypothesis for interaction 
between asp-hemolysin and LDL

• Asp-hemolysin and LDL and Ox-LDL 
interactions

• Expression of recombinant asp-
hemolysin

• 4th most abundant protein in the 
secretome

• Deletion of the gene did not affect 
hemolytic, cytotoxic and pathological 
properties of the fungus

[22]
[60]
[61,62]
[149]
[82]
[63]
[123–132]
[161]
[66]

NO Q4WA30 (Strain
FGSCA1100)

Asp-hemolysin-like protein

• Not detected in the secretome

• Deletion of the gene did not affect 
hemolytic, cytotoxic and pathological 
properties of the fungus

[66]

YES A4DA65 (Strain
FGSCA1100)

Putative uncharacterized protein

YES B0XX60, B0YET6
(Strain FGSC A1163)

Putative uncharacterized proteins

Aspergillus nidulans YES Q5BD27 Putative uncharacterized protein

Aspergillus niger YES A2QA29 (Strain
FGSCA1513)

• Sequence reported from genome 
database

[28]
[64]
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Fungal division/Fungi Aegerolysin
Accession number
(UniProtKB) Important notes Reference

• Detected as a part of the secretome based 
on in silico analysis

YES A2RBK6 (Strain
FGSCA1513)

Putative uncharacterized protein

YES G3XTV2, G3Y3Z1 (Strain
ATCC 1015)

Putative uncharacterized proteins

NO N/A Nigerlysin

• 72 kDa secreted hemolysin

• Heat labile at 75°C

• α-helical secondary structure

• Toxicity to neuronal cells

[40]

Aspergillus oryzae YES Q2TXT6 HlyA encoded protein

• First report of sequence in the genome 
database of A. oryzae

• Novel promoter for expression of 
heterologous proteins

• Stronger production of expressed 
proteins compared to other promoter 
systems

[25]
[145]

YES Q2U8×3, Q2UIJ5 Putative uncharacterized proteins

Aspergillus terreus YES Q0CRX8 Terrelysin

• Expression of recombinant terrelysin

• 16.5 kDa β-sheet protein

• Presence of terrelysin during early stages 
of growth

• Detection of terrelysin in culture 
supernatant

• Development of monoclonal antibodies 
for the first aegerolysin family protein

[39]
[3]

Altemaria tenuis NO N/A • First report on hemolytic activity in A. 
tenuis

[152]

Blastomyces dermatitidis YES C5GE86 (Strain ER-3) Putative uncharacterized protein

YES C5JIZ7 (Strain SLH14081) Putative uncharacterized protein

YES F2T7L8 (Strain ATCC
18188)

Putative uncharacterized protein

NO N/A • Identification of hemolytic activity 
associated in the yeast stage

[23]

Candida albicans NO N/A • Hemolysin secretion leads to iron uptake 
which induces phase switching

[80]

NO N/A • Identification of hemolytic activity 
associated in the yeast stage

[23]

NO N/A • Enhanced hemolytic activity in hyphae 
and secretion of hemolysin

[105]

Candida glabrata NO N/A HLP encoded protein [106]
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Fungal division/Fungi Aegerolysin
Accession number
(UniProtKB) Important notes Reference

• Hemolysin gene is involved in the 
phenotype switching

Coccidioides posadasii YES C5P7J6 Putative uncharacterized protein

Cordyceps militaris YES G3JFK8 Putative uncharacterized protein

Cryptococcus
neoformans

NO N/A • Identification of hemolytic activity 
associated in the yeast stage

[23]

Fusarium oxysporum YES F9GD59 Putative uncharacterized protein

Histoplasma capsulatum YES A6R7E8 (Strain WU24) Putative uncharacterized protein

YES C0NGB1 (Strain G18AR) Putative uncharacterized protein

YES C6H8A0 (Strain H143) Putative uncharacterized protein

YES F0U5M1 (Strain H88) Putative uncharacterized protein

NO N/A • Identification of hemolytic activity 
associated in the yeast stage

[23]

Metarhizium acridum YES E9E2I6 Putative uncharacterized protein

Metarhizium anisopliae YES E9EKK1, E9F766 Putative uncharacterized proteins

UNCLEAR N/A • Hemolysin associated with ageing of the 
fungus

[107]

Nectria haematococca YES C7YXA1 Putative uncharacterized protein

Neurospora crassa YES Q1K511 Putative uncharacterized protein

Neurospora tetrasperma YES F8MNX9 (Strain FGSC
2508)

Putative uncharacterized protein

YES G4UTV2 (Strain FGSC 
2509)

Putative uncharacterized protein

Paracoccidioides
brasiliensis

YES C0S9D2 (Strain Pb03) Putative uncharacterized protein

YES C1GBU4 (Strain Pb18) Putative uncharacterized protein

YES C1HAI8 (Strain Pb01) Putative uncharacterized protein

Penicillium chrysogenum YES B6GXR4, B6H164, 
B6H690
B6HE31, B6HIT7

Putative uncharacterized proteins

NO N/A Chrysolysin

• 2 kDa monomer hemolysin

• Increased production of MIP-2 in murine 
macrophages

[153]

Sordaria macrospora YES F7W167 Putative uncharacterized protein

Stachybotrys chartarum NO N/A Stachylysin

• Initial reports on hemolytic activity in S. 
chartarum ‘ Identification of a 11.9 kDa 
protein

• Heat inactivated

• Slow hemolytic process

• May cause hemorrhaging based on an 
earthworm model

• All strains produce stachylysin in 
presence of blood in growth medium

[154,155]
[147]
[81]
[150]
[148]
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Fungal division/Fungi Aegerolysin
Accession number
(UniProtKB) Important notes Reference

• Stachylysin is localized in inner wall of 
conidia/hyphae

• In tissues from exposed animals 
stachylysin staining was observed 
immediately surrounding the conidia, 
suggesting diffusion from it

• Detection of stachylysin in sera of 
patients and experimental animals

• Stachylysin as a measurable indicator of 
S. chartarum exposure

Trichophyton sp. NO N/A • T. rubrum, T. verrucosum, T. 
mentagrophytes and T. equinum show 
complete hemolysis

[156]

Basidiomycetes
Moniliophthora
perniciosa

YES E2LG72, E2LMN6
E2LQH3

Putative uncharacterized proteins

YES E2LVY5 MpPRIAl

• First report of aegerolysins in M. 
perniciosa

• Decreased levels of transcripts in yellow 
and reddish pink mycelium stage and 
prior to stress

• Increased levels of transcripts in mycelia 
and primordia

[112]
[109]

YES E2LE80 MpPRIA2

• First report of aegerolysins in M. 
perniciosa

• Increased levels of transcripts in the 
basidiomata

• Decreased levels of transcripts in 
mycelia and primordia

[112]
[109]

YES E2LNF8 Putative uncharacterized protein

• The sequence of this protein is very 
similar to E2LVY5, but is truncated to 
104 amino acids in the database

[112]

NO N/A Deuterolysins

• Identification of sequences similar to 
deuterolysins

[112]

Agrocybe aegerita YES 042717 Aegerolysin

• Cloning and sequencing of aegerolysin 
(Aa-Pril)

• Expressed during fruiting initiation

• Isolation of a 16 kDa hemolytic protein

[102]
[4]

Pleurotus eryngii YES D0FZZ2 Erylysin

• Part of a two-component hemolysin 
system and erylysin A belongs 
aegerolysin family

[111]
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Fungal division/Fungi Aegerolysin
Accession number
(UniProtKB) Important notes Reference

• 15 kDa protein β-sheet protein

UNCLEAR N/A Eryngeolysin

• Not identified as an aegerolysin family 
protein, however, N-terminal sequence 
suggests homology

• Heat labile 17 kDa hemolysin

• Specific cytotoxicity to L1 210 leukemia 
cell line

• Antibacterial activity against Bacillus 
species

[110]

Pleurotus ostreatus YES Q56QW9 Ostreolysin

• First report of cytolytic activity in P. 
ostreatus

• Isolation of ostreolysin, a 16 kDa 
hemolytic protein

• High expression during fruiting initiation 
and primordial formation

• Interactions with membrane lipids

• Mechanism of hemolysis action and 
identification of 4 nm pore size

• Interaction of ostreolysin with 
cholesterol-rich domains in cell 
membranes

• First report on β-sheet secondary 
structure of ostreolysin

• Deviation from optimal pH and 
temperature results in unfolding of 
ostreolysin to α-helical structure

• Unfolding prior to interaction with target 
cells results in loss of hemolytic activity

• Immunolocalization of ostreolysin in 
primordia and fruiting bodies

• Interactions of ostreolysin with lipid 
membranes composed of different 
steroids

• Toxicity of ostreolysin in experimental 
animals

• External addition of ostreolysin enhances 
fruiting initiation

• Putative role for ostreolysin in 
pathogenesis

[108]
[4]
[41]
[46,118]
[38]
[101]
[117]
[83,85,86]
[103]
[84,85]

YES Q8X1M9 Pleurotolysin

• Part of a two-component hemolysin 
system and pleurotolysin A belongs to 
aegerolysin family

• 17 kDa protein

• The two-component hemolysin 
specifically interacts with cholesterol/
sphingomyelin liposomes

[165]
[43]

Pleurotus nebrodensis NO N/A Nebrodeolysin [140]
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Fungal division/Fungi Aegerolysin
Accession number
(UniProtKB) Important notes Reference

• 27 kDa protein

• Cytotoxic to different cell lines

• Induces apoptosis in tumor cells

• Anti-HIV activity

Amanita phalloides NO N/A Phallolysin

• Initial characterization of cytolytic 
activities of phallolysin

• Purification of phallolysin and reporting 
of its cytotoxic activities

• Biochemical characterization of 
phallolysin

• Extensive characterization of hemolysin 
activity

• Electron microscopy-based 
characterization of cytolytic activity

• Mast cell degranulation

• Mechanism of hemolysis by phallolysin

• Phallolysin lyses liposomes containing 
phosphatidylcholine as well as 
sphingomyelin

• Specifically damages liposomes 
containing negatively charged 
phospholipids

• Lectin based hemolytic activity

• Cytotoxic towards tumor cells

[87]
[88]
[89]
[91]
[90]
[92]
[54]
[119]
[141]

Amanita rubescens NO N/A Rubescenlysin

• First report on identification of 
rubescenlysin

• Further characterization of hemolytic and 
cytolytic activities

• Mast cell degranulation

• Toxic effects in experimental animals

• Intravascular hemolysis and alveolar 
obstruction, hemorrhagic pulmonary 
edema in experimental animals

• Further reporting of pathology in 
experimental animals

[93]
[94]
[92]
[95]
[96]

Hypholoma fasciculare NO N/A Fascicularelysin

• Mast cell degranulation

[92]

Laetiporus sulphureus NO N/A LSL

• Lectin-based hemolytic activity

• 35 kDa protein

• N-terminal domain recognizes 
carbohydrates

• C-terminal domain is responsible for 
oligomerization and its removal 
abolished hemolytic activity

[48]
[49]
[50]
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Fungal division/Fungi Aegerolysin
Accession number
(UniProtKB) Important notes Reference

• Structural similarity to MTX2 (B. 
sphaericus) and a toxin (C. septicum)

• N-terminal domain structure has a β-
trefoil scaffold similar to that of ricin

• C-terminal domain structure is similar to 
that aerolysin (Aeromonas hydrophila)

Rhodophyllus
rhodopolius

NO N/A • Purification of hemolysin from R. 
rhodopolius

• 40 kDa heat labile hemolysin

[157]

Flammulina velutipes NO N/A Flammutoxin

• Isolation of flammutoxin and 
identification of cardiotoxicity

• Characterization of cardiotoxicity of 
flammutoxin

• Characterization of hemolytic activity of 
flammutoxin

• Purification of a 31 kDa protein and 
aggregates to form a 180 kDa protein on 
erythrocytes

• Electrophysiological properties of 
flammutoxin and identification of two 
different forms of pores on target cells

• Cloning and expression of recombinant 
flammutoxin

[97]
[98]
[99]
[158]
[44]
[164]

Volvariella volvacea NO N/A • Cardiotoxic hemolytic protein [100]

Termitomyces clypeatus NO N/A • Purification of ~64 kDa hemolysin

• Suggestion of interactions with 
phospholipids

[120]

Schizophyllum commune NO N/A Schizolysin

• 29 kDa hemolysin isolated from fruiting 
bodies

• Heat labile above 60°C

• Inhibits HIV-1 reverse transcriptase 
activity

[142]

Wallemia sebi NO N/A • Non-protein hemolytic activity caused by 
unsaturated fatty acids

[169]

Zygomycetes
Rhizopus nigricans

NO N/A • Initial characterization of hemolytic 
activity in R. nigricans

• Heat stable hemolysin and resistant to 
proteolytic activity

• Hemolysin may be a lipoprotein

[159]
[170]

Rhizopus arrhizus NO N/A • Initial characterization of hemolytic 
activity in R. arrhizus

[159]
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